
Simulations of Denial of Service Attacks in
Quantum Key Distribution Networks

Emir Dervisevic†, Filip Lauterbach∗, Patrik Burdiak∗, Jan Rozhon∗, Martina Slı́vová∗,
Matej Plakalovic†, Mirza Hamza†, Peppino Fazio‡∗, Miroslav Voznak∗, Miralem Mehic†

† Department of Telecommunications, Faculty of Electrical Engineering, University of Sarajevo,
Zmaja od Bosne bb, 71000, Sarajevo, Bosnia and Herzegovina

‡ DSMN, Ca’ Foscari University of Venice, Via Torino 155, 30172 Mestre (VE), Italy
∗ Faculty of Electrical Engineering and Computer Science,

VSB – Technical University of Ostrava, 17. listopadu 2172/15, 708 33 Ostrava, Czechia

Abstract—A QKD network can be considered an add-on
technology to a standard communication network that provides
IT-secure cryptographic keys as a service. As a result, security
challenges resulting in the suspension of functional work must
be addressed. This study analyzes a Denial of Service (DoS)
attack on the Key Management System (KMS), one of the
critical components of the QKD network in charge of key
management and key provisioning to authorized consumers.
Through simulation methods performed in the QKDNetSim, we
show that legitimate customers experience significantly worse
service during an excessive DoS attack on KMS.

Index Terms—Quantum Key Distribution Networks, Quality
of Service, Simulations, Networking

I. INTRODUCTION

A Quantum Key Distribution (QKD) network is an add-on
technology to a standard communication network that pro-
vides Information-Theoretically Secure (ITS) cryptographic
keys (donated simply as keys in the rest of the text) as a
service. Its sole purpose is to generate, manage, and distribute
keys between remote locations in an ITS manner, as well as
to provide keys as a service to end consumers (e.g., IPsec
encryptors) [1].

The QKD network differs from traditional telecommunica-
tion networks not only in purpose, but also in the manner in
which connections are established. The adjacent nodes of the
QKD network, i.e., QKD nodes, are connected through logical
QKD links, consisting of two channels: a quantum channel for
transmitting cryptographic values encoded in specific photon
characteristics and a public channel for verifying and process-
ing the exchanged data. A quantum channel creates a physical
path for photons to travel directly and unobstructedly between
two adjacent nodes. A public channel, on the other hand, can
be implemented as any ordinary connection, with an arbitrary
number of intermediary devices [2].

The logical QKD link allows adjacent QKD nodes to run a
QKD process, i.e., QKD protocol, that enables symmetric key
growth in an IT-secure manner [3]. Given that current gener-
ation quantum systems produce keys at rates of up to several
hundred kbps [4], this is usually insufficient to support the
protection of high-demand communication flows, emphasizing

the necessity for effective key management. As a result, both
endpoints of the corresponding QKD link implement limited-
capacity key buffers (storages) that are gradually filled with
the produced key material. The term ”key material” refers to
the symmetric cryptographic keys created during the QKD
process. Stored key material is then utilized for cryptographic
operations over user traffic [5], or for a key relay procedure
that allows arbitrary QKD nodes to share keys across the QKD
network in a hop-by-hop manner.

Key management is the most significant challenge in ef-
fectively and securely running a QKD network. Key man-
agement tasks include storing keys, relaying keys across the
QKD network, and supplying keys on-demand to a broad
range of applications with varying Quality of Service (QoS)
requirements. These tasks are entrusted to a Key Management
System (KMS) - an essential component housed within each
QKD node [6]. Since KMS is the first point of contact for
communication with user applications, it is reasonable to
investigate its security capabilities against threats that could
cause network failure, i.e., unavailability of QKD network
services. This is a significant threat because QKD network
services are most likely to be used to protect very sensitive
traffic flows in critical infrastructures where key delivery
interruption is unacceptable.

This paper analyzes Denial of Service (DoS) attacks against
KMS entities. We use Quantum Key Distribution Network
Simulation (QKDNetSim) module developed in network sim-
ulator 3 (ns-3) to simulate DoS attacks against KMSs and
collect measurement results. We discuss how these attacks
affect the level of service provided to legitimate consumers,
i.e., user applications. [7], [8] This research raises awareness
of security threats in QKD networks that are considered in a
classical domain rather than those strictly related to the QKD
process itself.

This paper is organized as follows: Section II describes the
structure of the QKD nodes that comprise the QKD network.
Section III describes the most common interface to receive
services from the QKD network. Section IV present the idea
behind DoS attacks against KMS entities, while section V



describes the simulation experiment setup. The discussion
of obtained results is given in section VI while section VII
concludes this study and outlines the future work.

II. QKD ARCHITECTURE

Although there are several different approaches for defining
the structure of the QKD node and, thus, functional require-
ments for the KMS entity, it is important to highlight the
approach being developed within the EU H2020 OPENQKD1

project [9].
Consider a Secure Application Entity (SAE) that wants to

establish secure communication with a remote SAE, such as an
IPsec VPN tunnel, as shown in Fig. 1. The data transmitted
via tunnel is to be protected using symmetric cryptographic
algorithms that use QKD-derived keys provided by the QKD
network. As a result, before establishing the VPN tunnel, SAEs
must obtain previously established symmetric keys from their
respective KMS entities [5]. The KMS is the initial point of
contact for processing requests from key-seeking applications.
It is linked to a QKD control entity, which operates and
monitors the QKD devices within the same QKD node by
performing routine tasks such as power on/off, reboot, restart,
QBER/temperature monitoring, and so on. The KMS is aware
of the status of QKD systems that establish QKD links with
nearby nodes and can communicate with other KMS entities
to share management information.

Furthermore, the node’s KMS communicates with a specific
routing entity, which attempts to compute the optimal route
for key relay based on information gathered about QKD
link statuses and application requirements. It is critical to
emphasize that a routing/forwarding entity should be physi-
cally placed separately from the KMS entity, as this would
give a great degree of flexibility. Thus, routing decisions can
also be made by external entities such as Software-Defined
Network (SDN) controllers. The separation of the routing
component enables the network administrator to change or
upgrade the routing logic as needed without interfering with
communications between other entities in the network node.

III. QKD END-USER STANDARDS

Several available standards discuss QKD integration with IP
networks. The ETSI GS QKD 014 standard, which describes
an Application Programming Interface (API) between end-
user applications and the QKD network’s KMS entities, is
highlighted in this paper [10]. It is based on the resource access
flow approach using REpresentational State Transfer (REST)
key acquisition communication. REST is an architectural style
for distributed organizations that relies on six guiding princi-
ples: client-server paradigm, stateless and cacheable commu-
nication, uniform interface, layered system, and option code
on demand2.

The use of the REST approach in the context of the ETSI
014 standard means that there are no dedicated reservations of

1www.openqkd.eu
2More details about REST can be found at www.restfulapi.net

key resources. QoS service is not guaranteed, and the respon-
sibility of providing QoS communication is transferred from
KMS entities to SAE applications. Since the communication is
performed on the stateless REST principle, there is no session
establishment function, session identifiers (KSID), or session
closing functions as in ETSI GS QKD 004 standard, which is
based on the reservation of key resources to deliver satisfactory
QoS experience. ETSI 014 defines three API functions:

• GET STATUS: probes the status of the available key
material shared with the desired SAE destination. The
function returns information about the assigned KMS
entity for the destination application, the key size that
can be delivered to the SAE (bits), the number of keys
stored in the key buffers, and the maximum number of
keys that can be delivered in one response.

• GET KEY: obtains keys to reach the destination SAE
application. The input values conveyed by this message
are the number and size of keys requested, additional SAE
IDs which can be used to specify two or more slave SAEs
sharing the same key, and additional extension parame-
ters. The response is the key container JSON structure,
including the key identifier(s) (ID) 3, base64-encoded key
value(s), and additional key extension values.

• GET KEY WITH KEY IDS: obtains keys from KMS
for the slave SAE. The input value conveyed by this
message is the key identifier(s) ID, while the output
should be the same as from the GET KEY message.

As shown in Figure 2, Alice’s SAE application will first
request information about the status and possibility of estab-
lishing a connection to the destination SAE application. After
obtaining a response, the application will decide whether and
when to request key(s) from the KMS by sending a GET KEY
message. It is up to the application to consider the obtained
status information and calculate the number of keys it will
ask for. The maximum number of keys that can be requested
from KMS per single query is provided in response to the
GET STATUS message. However, asking for larger quantities
of keys per single query can reduce further queries and reduce
jitter. The application should store the obtained keys in the
local buffer and use them as needed without waiting for
subsequent queries and answers from the KMS, leading to
delays. However, the request to deliver many keys in a single
query can lead to increased delay. Due to the enormous size
of the content, many IP packets might be fragmented along
the path to the destination.

IV. ATTACK SCENARIO

Consider a situation in which an attacker physically comes
into possession of user terminal equipment with which he can
communicate freely with the KMS. Certificates on the stolen
user equipment are valid, the equipment is within a secure
perimeter of communication, and there are no physical barriers
that could prevent communication with KMS.

3Note that the keys are organized into blocks, and each block of the
cryptographic key is identified using a unique ID. The ID values must be
identical on both sides of the QKD link to be managed.

www.openqkd.eu
www.restfulapi.net


Fig. 1. Schematic illustration of attack on KMS node

Fig. 2. Sequence diagram of ETSI 014 – Protocol and data format of REST-based key delivery API. The blue dotted lines are beyond the scope of the ETSI
014 standard [10].



An attacker may choose to intentionally obtain a large
amount of keys to consume all key resources and potentially
influence routing mechanisms to redirect traffic to those links
or devices that are under his control [11], [12]. In this context,
an attacker will generate a large number of GET KEY queries
to obtain as many keys as possible in a short period of time.
Because the primary resource managed in the QKD network
is the cryptographic key, KMSs must agree on the number
of keys that can be served between domains using dedicated
Service Level Agreements (SLAs). Additionally, since the
processing of each of the SAE requests on the KMS increases
the computational load, it is necessary to define the traffic
capacity that can be served from other domains. This is also a
weak point that an attacker can count on. Generating a large
number of queries can affect the amount of traffic exchanged
between KMSs, ultimately leading to non-serving legitimate
users.

Similarly, the attacker can degrade the QKD network’s level
of service simply by overwhelming KMS with requests with
an unknown destination SAE. In this case, the attacker does
not use QKD network’s most scarce resource - key material,
but instead forces KMS to perform unnecessary processing of
requests, potentially degrading the level of service experienced
by other SAEs. This scenario is analyzed in this study, and is
explained in more details in Section V.

V. SIMULATION SETUP

The simulations were carried out using QKDNetSim mod-
ule [7], [8], developed in ns-3 network simulator, which is the
first computing simulation environment for QKD networks that
focuses on the public channel performance and networking in
the classical domain with a maximum simplification of QKD
process.

The experiment, illustrated in Figure 1, considers a pair
of end-user applications that use QKD-derived keys in a
One-Time Pad (OTP) data encryption process to achieve
the most advanced secure communication in terms of data
confidentiality. End-user applications communicate with their
respective KMS entities using ETSI GS QKD 014 interface.
The intensity of their data communication is variable, i.e. it
ranges from 30kbps, 50kbps, 100kbps to 150kbps. Also, the
generated packets’ size varies and takes values from a set of
100, 300, 500, 800, and 1100 bytes.

Because the emphasis is on the end-user experience of
accessing keys, the underlying QKD network has a simple
topology consisting of point-to-point links between two QKD
nodes. End-user applications are contained within the secure
perimeter of their respective QKD nodes, which include,
among other modules, KMS entities.

Since the KMS cannot process a large number of requests
simultaneously, they are stored in a queue where they can
be sorted by priority. For our needs, a Waiting Fair Queueing
(WFQ) mechanism with a maximum capacity of 100 packages
has been implemented. As a result, all the requests are stored in
a queue and wait for their turn to be processed. The processing
of the requests has a deterministic time-cost. Also, the link

capacity between the two KMSs is set to a peak intensity of
10 Mbps. Although this value is certainly higher in practice,
it is sufficient to simulate and analyze security challenges.

To simulate a DoS attack against the KMS entity, the
malicious applications are placed within the secure perime-
ter of one QKD node. Malicious applications are simplified
end-user applications that do not perform any processing of
received responses. Their goal is to send invalid requests
to KMS at regular intervals. To model the intensity of the
DoS attack, the experiment is carried out with a varying
number of malicious applications. Also, the parameter p is
defined, which determines the time interval between sending
consecutive GET KEY queries to the KMS with randomly
defined values. The parameter p takes values from the set
0.05, 0.1, 0.3 and 0.5 seconds. A total of 240 simulations
with different seed values of the random number generator
were performed.

VI. SIMULATION RESULTS

Figure 3 shows the total number of requests sent to the KMS
depending on the number of malicious applications and the
intensity of their attacks. It can be noticed that the simulated
load growth on the KMS is linear and that the essential
parameter represents the intensity of the overall attack.

Figure 4 shows the effects of malicious applications on the
number of encrypted packets exchanged between legitimate
SAE applications. As the number of malicious attackers and
the intensity of attacks increase, increasing congestion on the
KMS results in fewer acquired keys necessary to encrypt data
traffic.

Fig. 3. Number of malicious packets sent to KMS vs. number of malicious
applications and their attack intensity

Figure 5 shows the effects of malicious applications on
the consumption of cryptographic QKD keys. Namely, it is
possible to notice a significant consumption of cryptographic
keys by legitimate SAE applications without an attack. But
by increasing the load on the KMS, all requests from mali-
cious applications are stored in the same queue, which leads
to squeezing or delays in processing requests arising from
legitimate SAE applications.



Fig. 4. The influence of malicious applications and their attack intensity on the
number of exchanged encrypted packets between legitimate user’s application.

Fig. 5. The influence of malicious applications and their attack intensity on
the average QKD key consumption (bits) by the legitimate user’s application.

It can be observed that legitimate users receive significantly
less service at increased attack intensities. It can also be
observed that the variability of the results (shaded areas) is
substantially less with increased attack intensity. Increasing
the number of malicious users is not a dominant factor in the
performance of KMS as long as they generate requests with
lower intensity.

VII. CONCLUSION

This paper presents the impact of malicious applications on
the functionality of KMS network entities. With the tendency
to integrate QKD technology in everyday telecommunication
networks, it is necessary to pay attention to security challenges
that can lead to the suspension of functional work. In addition
to focusing on the number of cryptographic keys available
to SAE applications, KMS must also pay attention to the
number of requests generated by SAE applications. If an
attacker comes into possession of such terminal devices, he can
generate attacks to hinder the functional operation of network
entities. As a result, in collaboration with network controllers
and managers, KMS entities must be capable of detecting

abnormal behavior of registered applications and temporarily
suspending their access to QKD network services in such in-
stances. KMS may implement internal security mechanisms or
rely on adapting well-known authentication, authorization, and
accounting (AAA) solutions from conventional IP networks.

The main contribution of this paper is the analysis of DoS
and DDoS attacks on KMS network entities in QKD networks.

ACKNOWLEDGMENT

The research leading to the published results was supported
by the NATO SPS G5894 project ”Quantum Cybersecurity in
5G Networks (QUANTUM5)”, partly by the H2020 project
OPENQKD under grant agreement No. 857156 and SGS reg.
no. SP2022/5 conducted at VSB -Technical University of
Ostrava, Czech Republic. This work was also supported by the
Ministry of Science, Higher Education and Youth of Canton
Sarajevo, Bosnia and Herzegovina under Grant No. 27-02-11-
41251-13/21.

REFERENCES

[1] M. Dianati and R. Alléaume, “Architecture of the secoqc quantum
key distribution network,” in 2007 First International Conference on
Quantum, Nano, and Micro Technologies (ICQNM’07). IEEE, 2007,
pp. 13–13.

[2] M. Mehic, O. Maurhart, S. Rass, D. Komosny, F. Rezac, and M. Voznak,
“Analysis of the Public Channel of Quantum Key Distribution Link,”
IEEE Journal of Quantum Electronics, vol. 53, no. 5, pp. 1–8, oct 2017.

[3] G. Brassard, L. Salvail, S. Louis, L. Salvail, and S. Louis, “Secret-
key reconciliation by public discussion,” Advances in Cryptology -
EUROCRYPT93, vol. 765, pp. 410–423, 1994.

[4] M. Mehic, M. Niemiec, S. Rass, J. Ma, M. Peev, A. Aguado, V. Martin,
S. Schauer, A. Poppe, C. Pacher, and M. Voznak, “Quantum Key
Distribution,” ACM Computing Surveys, vol. 53, no. 5, pp. 1–41, oct
2020.

[5] E. Dervisevic and M. Mehic, “Overview of Quantum key distribution
technique within IPsec architecture,” in Proceedings of the 18th Inter-
national Conference on Information Systems for Crisis Response and
Management ISCRAM 2021. ACM, 2021, pp. 1–10.

[6] M. Mehic, S. Rass, P. Fazio, and M. Voznak, Quantum Key Distribution
Networks: A Quality of Service Perspective. Springer International
Publishing, 2022, in Press.

[7] M. Mehic, O. Maurhart, S. Rass, M. Voznak, M. Miralem, M. Oliver,
R. Stefan, and Miroslav Voznak, “Implementation of Quantum Key
Distribution Network Simulation Module in the Network Simulator NS-
3,” Quantum Information Processing, vol. 16, no. 10, p. 253, oct 2017.

[8] F. Kutschera, E. Dervisevic, L. Behan, D. López, M. Mehic, M. Voznak,
H. Hübel, A. Pastor, and L. Cepeda, “Data acquisition and simulation
tools for virtual qkd testbed access–examples from the openqd project,”
in 2021 European Conference on Optical Communication (ECOC).
IEEE, 2021, pp. 1–4.

[9] V. Martin, J. P. Brito, C. Escribano, M. Menchetti, C. White, A. Lord,
F. Wissel, M. Gunkel, P. Gavignet, N. Genay, O. Le Moult, C. Abellán,
A. Manzalini, A. Pastor-Perales, V. López, and D. López, “Quantum
technologies in the telecommunications industry,” EPJ Quantum Tech-
nology, vol. 8, no. 1, p. 19, dec 2021.

[10] ETSI ISG QKD, “ETSI ISG QKD 014 - Quantum Key Distribution
(QKD); Protocol and data format of REST-based key delivery API,”
vol. 1, pp. 1–22, 2019.

[11] S. Rass and K. Sandra, “Indirect Eavesdropping in Quantum Networks,”
in The Fifth International Conference on Quantum, Nano and Micro
Technologies, ICQNM, 2011, pp. 83–88.

[12] S. Rass and S. König, “Turning Quantum Cryptography against itself:
How to avoid indirect eavesdropping in quantum networks by passive
and active adversaries,” International Journal On Advances in Systems
and Measurements, vol. 5, no. 1 2, pp. 22–33, 2012.


	Introduction
	QKD Architecture
	QKD End-User Standards
	Attack Scenario
	Simulation Setup
	Simulation Results
	Conclusion
	References

