

Cause-effect graphing technique: A survey of
available approaches and algorithms

Ehlimana Krupalija
Faculty of Electrical Engineering

University of Sarajevo

Sarajevo, Bosnia and Herzegovina
ekrupalija1@etf.unsa.ba

Emir Cogo
Faculty of Electrical Engineering

University of Sarajevo

Sarajevo, Bosnia and Herzegovina
ec15261@etf.unsa.ba

Šeila Bećirović
Faculty of Electrical Engineering

University of Sarajevo

Sarajevo, Bosnia and Herzegovina
sbecirovic1@etf.unsa.ba

Irfan Prazina
Faculty of Electrical Engineering

University of Sarajevo

Sarajevo, Bosnia and
Herzegovina

iprazina1@etf.unsa.ba

 Ingmar Bešić
Faculty of Electrical Engineering

University of Sarajevo
Sarajevo, Bosnia and

Herzegovina
ingmar.besic@etf.unsa.ba

Abstract— Cause-effect graphs are often used as a method for

deriving test case suites for black-box testing different types of

systems. This paper represents a survey focusing entirely on the

cause-effect graphing technique. A comparison of different

available algorithms for converting cause-effect graph

specifications to test case suites and problems which may arise

when using different approaches are explained. Different types of

graphical notation for describing nodes, logical relations and

constraints used when creating cause-effect graph specifications

are also discussed. An overview of available tools for creating

cause-effect graph specifications and deriving test case suites is

given. The systematic approach in this paper is meant to offer aid

to domain experts and end users in choosing the most appropriate

algorithm and, optionally, available software tools, for deriving

test case suites in accordance to specific system priorities. A

presentation of proposed graphical notation types should help in

gaining a better level of understanding of the notation used for

specifying cause-effect graphs. In this way, the most common

mistakes in the usage of graphical notation while creating cause-

effect graph specifications can be avoided.

Keywords—cause-effect graphs, test case suites, black-box

testing, software testing, software quality

I. INTRODUCTION

Black-box testing is an important part of the software
development process, where the development of the system is
observed as a black box without any knowledge of its interior
and tested from the viewpoint of the end user [1]. Many methods
have been developed for the purpose of deriving black-box tests
for a given system and they are described in [2], [3], [4], and [5],
whereas black-box testing automatization techniques are
summarized in [6]. Most commonly used black-box testing
methods include boundary value analysis, equivalent classes,
pairwise testing and cause-effect graphs. Cause-effect graphing
was developed in 1970 as a black-box testing technique for
testing hardware logical circuits [7]. Since then, this method has
gone through many changes regarding the notation used for
describing cause-effect graph elements, including graph nodes,
logical relations and constraints. The initially proposed

algorithm for deriving test cases from the graph specification has
also been modified many times and adapted for specific
purposes and application on different types of systems.

Depending on the type of the system being tested and
available resources such as time and memory, different priorities
can be determined when deriving test case suites from system
requirements (e.g. prioritization based on coverage or on failing
test cases explained in [8]). In all cases, the tests contained in the
test suite need to ensure high fault detection in order to prevent
software from failure [9]. Some applications may prefer quantity
of test cases over test quality, if tests can be executed quickly.
However, if test execution is time-costly, the test case subset
needs to be as small as possible while ensuring a high level of
fault detection [10] [11]. Validating the conformance of system
requirements with the software implementation is very
important, because mistakes during this process lead to
unrepresentative test case suites and, subsequently, low fault
detection (as described in [4] and explored in [12]). For this
reason, significant efforts have been invested into improving and
automatizing the requirement elicitation process so that cause-
effect graph specifications can perfectly conform to system
requirements, such as [13] and [14].

Cause-effect graphs have been applied to numerous
problems in practice, such as black-box testing safety-critical
systems for monitoring high-speed trains [15], missile
navigation [14], quantum programs [16], automatizing the
college registration process [17], ATM machine money
withdrawal [18] and knowledge assessment in e-learning [19].
The graphical notation used in these works for representing
cause-effect graph elements in some cases only partially
conforms to the notation presented in the standard literature ([2]
and [1]), whereas in some cases entirely novel and non-
standardized types of notation are used, which are more difficult
to understand by non-domain experts. For this reason, a survey
explaining different existing types of graphical notation is
necessary, so that the usage of non-standardized notation can be
avoided in future works focused on applying the cause-effect
graphing technique on different real-world problems.

Additionally, it is necessary to explain and summarize the
existing algorithms and approaches for converting cause-effect
graph specifications to test suites. This way, the most common
drawbacks of the approach used for generating test case suites
from cause-effect graph representations identified in [20] can be
avoided and a better understanding of the technique can be
acquired.

This paper presents a systematic literature review of
available cause-effect graphing approaches and algorithms in
the form of a secondary study. A survey of this type, focusing
entirely on the cause-effect graphing technique, has not been
conducted before to the knowledge of the authors of this paper.
Research papers (journal articles and conference papers)
published from 1990 to 2022 were collected from the following
databases: Web of Science (Core Collection), Scopus, EBSCO
and IEEE Xplore. Papers were obtained by using the search term
“cause-effect graph”. The conducted study aims to:

• Present different proposed types of graphical notation for
representing cause-effect graph elements (nodes, logical
relations and constraints). This may aid the users tasked
with creating cause-effect graph specifications so that
common mistakes in the usage of graphical notation and
improper understanding of different logical relations and
constraints can be avoided.

• Give a systematic overview of available algorithms for
deriving test case suites from cause-effect graph
representations and analyze the strengths and
weaknesses of all different approaches. Afterwards, the
most appropriate algorithm can be chosen for specific
purposes by users of the cause-effect graphing technique.

• Compare available software tools for creating cause-
effect graphs and deriving test case suites. In this way,
these tools can be used as help for quicker cause-effect
graph specification and test case suite derivation.

The rest of this work is structured as follows. Section II
describes different forms of cause-effect graphing notation used
for graphically describing cause-effect graph elements. An
analysis and comparison of available algorithms for deriving test
case suites from cause-effect graph specifications is given in
Section III. Section IV introduces the available tools for creating
cause-effect graph specifications and converting them into test
case suites. In Section V, an overall analysis of all presented
approaches is given.

II. NOTATION USED FOR REPRESENTING CAUSE-EFFECT

GRAPHS

Cause-effect graphs are composed of three types of elements
[2] [1]: nodes (causes, effects and intermediates), logical
relations between different types of nodes and constraints on
same types of nodes. Nodes can be in one of two states – active
(1) or inactive (0). Logical relations explain how the change of
input variables (graph causes) affects the output variables (graph
effects). Constraints explain what combinations of variables are
forbidden. The different approaches for representing cause-
effect graph elements are summarized in Table I. Cause-effect
graphs and all elements they contain are first introduced in [7].
In this work, the purpose of cause and effect nodes is explained.

Intermediate nodes are only implicitly defined and are referred
to as “unknown dummy nodes”. Six types of logical relations –
direct, negation, conjunction, disjunction, negated conjunction
and negated disjunction are introduced, as well as three types of
constraints – mutual exclusion, all-inclusion and mutual
exclusion and all-inclusion. This approach is not commonly
used in practice, as the usage of intermediate nodes is often
necessary for representing complex logical relations.

More detailed explanations of different types of nodes are
given in [2]. Intermediates are explicitly defined as a separate
type of nodes for the first time. Separate numbering for different
types of nodes is introduced as well. This work adapts all six
initially proposed types of logical relations and all three different
types of constraints. Additional two types of constraints are
introduced – requirement and masking. This approach is
commonly used in works such as [17], [15], and [16].

A simplification of previous approaches is offered in [1],
dropping the negated conjunction and negated disjunction and
adopting the remaining four types of logical relations. The usage
of intermediates and all constraints is adopted. In this work,
cause nodes are numbered incrementally, whereas other types of
nodes are numbered according to system requirements. This
approach is used in works such as [20] and [21], however
representing the negated conjunction and disjunction is more
difficult because additional logical relations need to be used.

A different way of representing cause-effect graphs is
introduced in [22], making it more suitable for the requirement
elicitation process. In this work, only three types of logical
relations are used – negation, conjunction and disjunction. No
existing types of constraints are adopted. Instead, three new
types of constraints are defined – positive, negative and neutral.
Other types of connections are also introduced – membership,
property and interactions. Node numbering is not used by this
approach, due to its intended application for high-level and
abstract descriptions of software requirements. Causes are
described as “root factors”, effects as “top variables/events” and
intermediates as “intermediate variables/events”.

Table II shows a summary of all approaches for graphically
representing cause-effect graph elements (nodes, logical
relations and constraints), including the usage of arrow tips. The
initial graphical notation for describing cause-effect graphs was
introduced in 1970 by [7]. The work contains two graphically
illustrated examples which demonstrate the usage of nodes,
logical relations and constraints. Logical relations are
graphically denoted with straight lines containing different
letters depending on the type of relation: D for direct, N for
negation, A for conjunction, O for disjunction, A for negated
conjunction and O for negated disjunction. Constraints are
graphically denoted with dashed lines containing different
letters depending on the type of constraints: E for exclusion, I
for inclusion and U for mutual exclusion and all-inclusion.

The most commonly used graphical notation for describing
logical relations is introduced in [2] and [1] – “~” for negation,
“˄” for conjunction, “˅” for disjunction and a combination of
these symbols for the negated conjunction and negated
disjunction. The notation for representing exclusion and
inclusion is adopted from [7], mutual exclusion and all-inclusion
is represented by using the letter O and masking is represented

TABLE I. SUMMARY OF DIFFERENT APPROACHES FOR REPRESENTING CAUSE-EFFECT GRAPH ELEMENTS

Source Year Node types Node numbering Logical relations Constraints

[7] 1970

1. Causes
2. Effects
3. Unknown dummy nodes

Incremental

1. Direct
2. Negation
3. Conjunction
4. Disjunction
5. Negated conjunction
6. Negated disjunction

1. Mutual exclusion
2. All-inclusion
3. Mutual exclusion and all-inclusion

[2] 2010
1. Causes
2. Effects
3. Intermediates

Separate for each type

1. Direct
2. Negation
3. Conjunction
4. Disjunction
5. Negated conjunction
6. Negated disjunction

1. Mutual exclusion
2. All-inclusion
3. Mutual exclusion and all-inclusion
4. Requirement
5. Masking

[1] 2012
1. Causes
2. Effects
3. Intermediates

- Incremental for causes
- Named for effects and
 intermediates

1. Direct
2. Negation
3. Conjunction
4. Disjunction

1. Mutual exclusion
2. All-inclusion
3. Mutual exclusion and all-inclusion
4. Requirement
5. Masking

[22] 2017

1. Root factors
2. Top variables/events
3. Intermediate
 variables/events

Named for all types
1. Negation
2. Conjunction
3. Disjunction

1. Positive
2. Negative
3. Neutral

by using the letter M. Small differences are present between the
notations used in these two works. In [2], the required constraint
does not use any letters for representation, whereas in [1] the
letter R is used for this purpose. In [1], an arrow tip is used for
describing the required and masking constraints. This notation
is often used in works such as [15], [14] and [16].

Many differences to the previously adopted approaches were
introduced in 2017 by [22]. This work proposes the
representation of logical relations as logical AND, OR and NOT
circuits, which makes cause-effect graphs more similar to
hardware logical circuits, as initially intended in [7]. Different
types of nodes are represented with different types of bounding
boxes (causes as ellipses, effects as circles and intermediates as
boxes with rounded corners). Positive relations are described by
using the “+” sign and negative relations by using the “-” sign.
This approach only uses arrow tips for types of connections for
which they are explicitly defined (e.g. causality and correlation).

Some works focused on applying the cause-effect graphing
technique to real-world problems do not conform to any of the
previously described notation. In [18], arrow tips are used for
describing directions of logical relations. “{ ˄” is used for
describing conjunction and “¬” is used for describing negation.
A type of notation where logical relations are represented as
separate nodes (through the usage of rounded bounding boxes)
is also presented, where logical relations are named by using
words (e.g. conjunction is represented as “and”). A similar
approach is also used in [19], where differentiation of relations
from nodes is done by representing logical relations through the
usage of square bounding boxes.

III. ALGORITHMS FOR DERIVING TEST CASE SUITES FROM

CAUSE-EFFECT GRAPH SPECIFICATIONS

Different algorithms which have been proposed for
converting cause-effect graphs to test case suites are
summarized in Table III. Two algorithms for generating test
case suites from cause-effect graph specifications are introduced

in [7] – a brute-force approach which works by propagating
values forward through the graph in order to determine resulting
effect values, and a backward-propagation approach which
forcefully activates effects and determines cause values by
propagating the effect values backward through the graph. All
subsequent algorithms represent some form of the initially
proposed backward-propagation approach. The forward-
propagation approach was immediately abandoned due to its
high computational complexity, which makes it too slow to be
able to generate resulting test case suites in real time. A more
detailed explanation of the backward-propagation algorithm is
offered in [2] and [1], as well as examples of its application on
cause-effect graphs of different sizes.

Many attempts at improving the initial algorithm have been
made. In [23], the usage of binary decision trees was proposed
in order to further optimize the final test case table so that it
contains test cases with multiple simultaneously active effects.
In this approach, a binary tree is created for every effect of the
graph and the backward-propagation algorithm is executed for
every separate tree. At the end of the process, multiple test case
tables are merged in order to obtain the optimized test case table.
A similar approach was proposed in [24], without the usage of
binary trees but instead by performing optimization on the test
case table itself. Transforming UML models to cause-effect
graphs for achieving a higher level of standardization was
proposed in [25]. In this approach, a process for converting
UML state machines to cause-effect graphs is proposed in order
to enable the application of this technique for systems which are
easily represented by UML models. This approach was further
explored and applied for deriving test case suites in [26], through
the usage of XMI files and the ATLAS programming language.

The first approaches that propose the representation of
cause-effect graph elements as Boolean expressions are [27] and
[28]. These works introduce the Boolean Operator (BOR)
strategy for generating test case suites from cause-effect graph
specifications. Combining pairwise testing with cause-effect
graphing was proposed in [29], by using the approach based on

TABLE II. SUMMARY OF DIFFERENT APPROACHES FOR THE GRAPHICAL REPRESENTATION OF CAUSE-EFFECT GRAPHS

Source Year Node representation Usage of arrow tips Notation for logical relations Notation for constraints

[7] 1970 Rounded bounding boxes No
Straight lines with letters (D, N,
A, O, A and O)

Dashed lines with letters (E, I, U)

[2] and [1] 2010 and 2012 Rounded bounding boxes
Yes (only for specific
constraint types)

Straight lines with symbols (˄, ˅,
~ and combinations of these
symbols)

Dashed lines with letters (E, I, O, R,
M)

[18] and [19] 2012 and 2016 Rounded bounding boxes
Yes (for logical
 relations)

Rounded/square bounding boxes Not discussed

[22] 2017

Causes – ellipses
Effects – circles
Intermediates – boxes
with rounded corners

Yes (only for specific
connection types)

Logical circuits Straight lines with letters (+, -)

TABLE III. SUMMARY OF DIFFERENT APPROACHES FOR THE USAGE OF THE BACKWARD-PROPAGATION ALGORITHM IN DERIVING TEST CASE SUITES FROM
CAUSE-EFFECT GRAPH SPECIFICATIONS

Approach Source Year Type of algorithm Algorithm specifics

Consideration of

simultaneously active

effects

Brute force [7] 1970 Forward-propagation
Not implemented due to hardware
limitations

No

Initially proposed [7] 1970 Backward-propagation
APL/360 program for testing
hardware circuits

No

Boolean expressions [27] and [28] 1993 and 1997 Backward-propagation Boolean operator (BOR) strategy No

Optimization [23] 2009 Backward-propagation
Usage of binary tress for considering
simultaneously active effects

Yes

Combination with pairwise
testing

[29] 2014 Combined
Combined approach with the usage of
Boolean expressions and pairwise
testing

Yes

UML model
transformation

[25] and [26] 2008 and 2014 Combined
Usage of UML models for
transformation

No

Boolean expressions [30] 2015 Backward-propagation
Masking modified condition/decision
coverage (MCDC) approach

Yes

Optimization [24] 2017 Backward-propagation
Decision table reduction based on
equivalent test cases

Yes

Boolean expressions [31] 2021 Backward-propagation
Mutant-based spectral testing for
Boolean specification models

No

Boolean expressions for representing cause-effect graph
elements. The usage of Boolean expressions is further explored
in [30] in order to increase the formalization of the cause-effect
graph specification process so that it can be less error-prone.
Cause-effect graphs are represented mathematically by using
Boolean expressions, making it possible to use mathematical
formulas when deriving test case suites by using the backward-
propagation algorithm. In this way, a smaller test case table is
obtained while maintaining a high fault detection rate. This
concept was perfected and successfully applied by using the
GraphML format in [31].

A systematic review of drawbacks of the initial backward-
propagation algorithm is offered in [20]. The main identified
weaknesses are:

• Many inconsistencies in the description of the algorithm
in [7] and [1], which lead to ambiguous interpretations
of the steps of the algorithm and, subsequently, to its
incorrect application for the derivation of test case
suites.

• The imprecise definition of the algorithm, which leads
to the possibility of creating multiple different test case
suites for the same set of system requirements which can
be modelled in multiple equivalent ways, resulting in
multiple cause-effect graphs.

• The usage of the “don’t care” combination for output
values, which needs to be resolved to either active or
inactive output, but without any clear explanation as to
how the resolving process should be done. The “don’t
care” combination is still present in more recent works
such as [2] and [18].

• Insufficient amount of explanation for different
constraint types, which discourages their usage and
leads to incomplete test cases suites.

• Lack of consideration for different combinations of
output values. In the initially proposed backward-
propagation algorithm, only effect activations are

considered, whereas the absence of effect activations
may be of interest for different types of systems.

The importance of simultaneous effect activation is
emphasized in [23], which is also not considered by the initially
proposed algorithm. An attempt to enable the automatization of
the test case derivation process and decrease the error-proneness
of the initial algorithm is made in all approaches based on
Boolean expressions (e.g. [30] and [31]), by introducing a
mathematically formulated algorithm with explicitly described
steps, removing all ambiguities and inconsistencies. A method
for resolving the drawback concerning the misuse of cause-
effect graph elements by users of the technique is proposed in
[14]. This method automatizes the process of cause-effect graph
specification from system requirements by using natural
language processing methods to derive cause-effect graph
elements from the formal definition of the system. Novel
notation more suited for domain experts is introduced in [22] in
an attempt to resolve this drawback.

IV. CAUSE-EFFECT GRAPHING TOOLS

Several software tools for aiding the process of cause-effect
graph specification and test case suite derivation have been
introduced, as summarized in Table IV. The first such tool,
BenderRBT, was developed by [32] in 2002. This tool is a
desktop application that allows the user to graphically define the
desired cause-effect graph specification, although the graphical
elements do not use any of the graphical notation types
explained in Section II. The option to derive test case suites is
also supported. The tool is commercial and not available for free
usage.

Another desktop tool for cause-effect graphing was
introduced in [33] (Cause-Effect Graph Software Testing Tool
– CEGSTT). This tool allows the user to define cause-effect
graph elements through the user interface, however the tool does
not support the usage of graphical elements. Test case suites can
be derived by using the created cause-effect graph
specifications. The tool also enables automatic calculation of the
effect coverage metric, which describes the ratio of graph effects
covered by the generated test case suite. CEGSTT has not been
disclosed by its authors and is therefore unavailable for free
usage. Its usability is unclear, because its initial interface was
executed on the Microsoft Windows 7 operating system.

Recently, a new tool named Test Generator for Cause-Effect
Graphs (TOUCH) has been developed in [31] and this tool is
available for free usage at [34]. It is cross-platform and can be
executed on the latest operating systems. This tool does not
enable the user to graphically define cause-effect graph
elements, instead specifying the graph through the user
interface. It has the functionality of deriving test case suites from
cause-effect graph specifications by using different algorithms
based on Boolean expressions and the original backward-
propagation algorithm from [1]. In 2022, a new software tool
designed for automatic conversion of system requirement
descriptions to cause-effect graph specifications, Korean
Requirement Analyzer for the Cause-Effect Graph (KRA-CE)
[35] was introduced. This tool is web-based, but it has not yet
been disclosed by its authors.

TABLE IV. SUMMARY OF AVAILABLE CAUSE-EFFECT GRAPHING TOOLS

Name Source Year
Open-

source

Graphical

elements
Platform

BenderRBT [32] 2002 No Yes
Microsoft
Windows

CEGSTT [33] 2017 No No
Microsoft
Windows

TOUCH
[31]
and
[34]

2021 Yes No
Cross-
platform

KRA-CE [35] 2022 No No Web-based

V. CONCLUSION

This paper gives a systematic summary of different aspects
of the cause-effect graphing black-box testing technique. The
process of defining graphs is complex and many ways of
representation and graphical notations for different graph
elements (nodes, logical relations and constraints) have been
proposed. Many works which apply cause-effect graphs on
different types of systems use different types of notation, which
can lead to many errors in the process of defining cause-effect
graph specifications and all further steps in black-box testing
through the usage of this technique.

The initially proposed backward-propagation algorithm for
deriving test cases from cause-effect graph representations was
analyzed and many of its improvements and combinations with
other methods were mentioned. Known drawbacks of the
initially proposed algorithm and attempts at its enhancement
were explained, as well as different existing tools for aiding the
usage of the cause-effect graphing method. Rather small number
of available software tools for aiding the cause-effect graphing
process indicates that new tools should be created, preferably
with the usage of graphical elements which are not supported in
currently available tools.

The existing approaches were introduced, explained and
compared to help users determine which notation they should
use when describing cause-effect graphs and what elements they
can use so that the cause-effect specifications can be complete
and contain all necessary logical relations and constraints.
Depending on their desired goal, the users can choose one of the
many available algorithms for deriving test case suites from
cause-effect graph specifications and optionally use the
available tools for aiding this process. This can help remove
some of the inconsistencies of the most widely used backward-
propagation algorithm, resulting in cause-effect graph
specifications which are easy to understand by future users due
to the usage of standard accepted graphical notation and test case
suites generated by using algorithms most suited for the desired
user priorities.

Cause-effect graphs have many applications in practice,
mainly black-box testing of different types of systems without
specific requirements for system boundaries, class similarities
and correlation. In the future, the presented concepts can be used
for applying the cause-effect graphing technique for black-box
testing of safety-critical, industrial, embedded or real-time
systems, or any combination thereof. A case study of this type

can be conducted while applying different types of proposed
graphical notation and different types of existing algorithms,
using the forward-propagation, backward-propagation, or the
combined approach. The usability, ease of understanding for
domain experts and the fault detection rate of the generated
black-box testing suites for these approaches can be compared.
Existing approaches can be merged in order to combine the
positive aspects of each different approach, such as enhancing
the existing graphical notation while using all different proposed
types of logical relations and constraints.

REFERENCES

[1] G. J. Myers, T. Badgett and C. Sandler, The Art of Software Testing, 3rd
ed., New Jersey: John Wiley & Sons, Inc., 2012.

[2] S. L. Pfleeger and J. M. Atlee, Software Engineering, Theory and
Practice, 4th ed., New Jersey: Pearson Higher Education, 2010.

[3] S. Nidhra and J. Dondeti, "Black box and white box testing techniques -
A literature review," International Journal of Embedded Systems and

Applications (IJSEA), vol. 2, no. 2, pp. 29-50, 2012.

[4] M. J. Pramod and M. Prasanna, "A comparative analysis on black box
testing strategies," in 2016 International Conference on Information

Science (ICIS), Kochi, 2016.

[5] N. Anwar and S. Kar, "Review paper on various software testing
techniques & strategies," Global Journal of Computer Science and
Technology, vol. 19, no. 2, pp. 43-49, 2019.

[6] L. Mariani, M. Pezzè and D. Zuddas, "Recent advances in automatic
black-box testing," Advances in Computers, vol. 99, pp. 157-193, 2015.

[7] W. R. Elmendorf, "Automated design of program test libraries," IBM
Technial Report TR 00.2089, 1970.

[8] S. Kukolj, V. Marinković, M. Popović and S. Bognár, "Selection and
prioritization of test cases by combining white-box and black-box testing
methods," in 2013 Third Eastern European Regional Conference on the

Engineering of Computer Based Systems, Budapest, 2013.

[9] M. J. Pramod, S. Priyadarsini, R. V. Renju, S. Sumisha and M. Prasanna,
"A comparative analysis on software testing tools and strategies,"
International Journal of Scientific & Technology Research, vol. 9, no. 4,
pp. 3510-3515, 2020.

[10] T. Y. Chen, P. L. Poon, S. F. Tang and Y. T. Yu, "White on black: A
white-box-oriented approach for selecting black-box-generated test
cases," in Asia-Pacific Conference on Quality Software, Hong Kong,
2000.

[11] S. Singhal, N. Jatana, B. Suri, S. Misra and L. Fernandez-Sanz,
"Systematic literature review on test case selection and prioritization: A
tertiary study," Applied Sciences, vol. 11, no. 24, 2021.

[12] C. Burnay, S. Bouraga, J. Gillain and I. J. Jureta, "What lies behind
requirements? A quality assessment of statement grounds in
requirements elicitation," Software Quality Journal, vol. 28, pp. 1615-
1643, 2020.

[13] B. Vogel-Heuser, V. Karaseva, J. Folmer and I. Kirchen, "Operator
knowledge inclusion in data-mining approaches for product quality
assurance using cause-effect graphs," IFAC PapersOnLine, vol. 50, no.
1, pp. 1358-1365, 2017.

[14] W. S. Jang and R. Y. C. Kim, "Automatic generation mechanism of
cause-effect graph with informal requirement specification based on the
Korean language," Applied Sciences, vol. 11, no. 24, 2021.

[15] L. Dou and W.-D. Yang, "Design of test case for ATP speed monitoring
function based on cause-effect graph," in 2019 CAA Symposium on Fault
Detection, Supervision and Safety for Technical Processes

(SAFEPROCESS), Xiamen, 2019.

[16] N. Oldfield, T. Yue and S. Ali, "Investigating quantum cause-effect
graphs," in 2022 IEEE/ACM 3rd International Workshop on Quantum

Software Engineering (Q-SE), Pittsburgh, 2022.

[17] D. Jagli, T. Mamatha, S. Mahalingam and N. Ojha, "The application of
cause effect graph for the college placement process," International

Journal of Software Engineering & Applications (IJSEA), vol. 3, no. 6,
pp. 77-85, 2012.

[18] J. Lal and S. Singh, "From cause to effect: An empirical study of cause-
effect graphing testing techniques and its test-measurement: A review,"
International Journal of Computer Science and Technology, vol. 3, no.
3, pp. 89-92, 2012.

[19] N. Gavrilović and L. Lazić, "Knowledge assessment using cause-effect
graphing methods," in The Seventh International Conference on

eLearning (eLearning-2016), Belgrade, 2016.

[20] K. Nursimulu and R. L. Probert, "Cause-effect graphing analysis and
validation of requirements," in Proceedings of CASCON'95: Conference

of the Centre for Advanced Studies on Collaborative Research, Toronto,
1995.

[21] M. E. Khan, "Different approaches to black box testing technique for
finding errors," International Journal of Software Engineering &

Applications (IJSEA), vol. 2, no. 4, pp. 31-40, 2011.

[22] F. Huang and C. Smidts, "Causal mechanism graph - A new notation for
capturing cause-effect knowledge in software dependability," Reliability

Engineering and System Safety, vol. 158, pp. 196-212, 2017.

[23] P. R. Srivastava, P. Patel and S. Chatrola, "Cause effect graph to decision
table generation," SIGSOFT Software Engineering Notes, vol. 34, no. 2,
2009.

[24] M. Agrawal and U. Badhera, "Approach for minimization of test cases
from decision table generated from cause effect graph," International

Journal of Computer Applications, vol. 172, no. 7, pp. 7-10, 2017.

[25] S. Weißleder and D. Sokenou, "Cause-effect graphs for test models
based on UML and OCL," Softwaretechnik-Trends, vol. 28, no. 3, 2008.

[26] H. S. Son, R. Y. C. Kim and Y. B. Park, "Test case generation from
cause-effect graph based on model transformation," in 2014

International Conference on Information Science & Applications

(ICISA), Seoul, 2014.

[27] K.-C. Tai, A. Paradkar, H.-K. Su and M. A. Vouk, "Fault-based test
generation for cause-effect graphs," in CASCON'93: Proceedings of the

1993 Conference of the Centre for Advanced Studies on Collaborative
Research, Toronto, 1993.

[28] A. Paradkar, K.-C. Tai and M. A. Vouk, "Specification-based testing
using cause-effect graphs," Annals of Software Engineering, vol. 4, no.
1, pp. 133-157, 1997.

[29] I. Chung, "Modeling pairwise test generation from cause-effect graphs
as a Boolean satisfiability problem," International Journal of Contents,
vol. 10, no. 3, pp. 41-46, 2014.

[30] T. Ayav and F. Belli, "Boolean differentiation for formalizing Myers'
cause-effect graph testing technique," in 2015 IEEE International
Conference on Software Quality, Reliability and Security - Companion,
Vancouver, 2015.

[31] D. K. Ufuktepe, T. Ayav and F. Belli, "Test input generation from cause-
effect graphs," Software Quality Journal, vol. 29, pp. 733-782, 2021.

[32] I. BenderRBT, "BenderRBT: The Software Quality and Testing
Experts," [Online]. Available:
https://www.benderrbt.com/bendersoftware.htm. [Accessed 22
September 2022].

[33] B. Bekiroglu, "A cause-effect graph software testing tool," European

Journal of Computer Science and Information Technology, vol. 5, no. 4,
pp. 11-24, 2017.

[34] D. K. Ufuktepe, "TOUCH: Test Generator for Cause Effect Graphs,"
[Online]. Available: https://github.com/denizkavzak/TOUCH.
[Accessed 22 September 2022].

[35] W. S. Jang and R. Y. C. Kim, "Automatic cause–effect graph tool with
informal Korean requirement specifications," Applied Sciences, vol. 12,
no. 18, 2022.

