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Abstract— Cause-effect graphs are often used as a method for 

deriving test case suites for black-box testing different types of 

systems. This paper represents a survey focusing entirely on the 

cause-effect graphing technique. A comparison of different 

available algorithms for converting cause-effect graph 

specifications to test case suites and problems which may arise 

when using different approaches are explained. Different types of 

graphical notation for describing nodes, logical relations and 

constraints used when creating cause-effect graph specifications 

are also discussed. An overview of available tools for creating 

cause-effect graph specifications and deriving test case suites is 

given. The systematic approach in this paper is meant to offer aid 

to domain experts and end users in choosing the most appropriate 

algorithm and, optionally, available software tools, for deriving 

test case suites in accordance to specific system priorities. A 

presentation of proposed graphical notation types should help in 

gaining a better level of understanding of the notation used for 

specifying cause-effect graphs. In this way, the most common 

mistakes in the usage of graphical notation while creating cause-

effect graph specifications can be avoided. 

Keywords—cause-effect graphs, test case suites, black-box 

testing, software testing, software quality 

I. INTRODUCTION 

Black-box testing is an important part of the software 
development process, where the development of the system is 
observed as a black box without any knowledge of its interior 
and tested from the viewpoint of the end user [1]. Many methods 
have been developed for the purpose of deriving black-box tests 
for a given system and they are described in [2], [3], [4], and [5], 
whereas black-box testing automatization techniques are 
summarized in [6]. Most commonly used black-box testing 
methods include boundary value analysis, equivalent classes, 
pairwise testing and cause-effect graphs.  Cause-effect graphing 
was developed in 1970 as a black-box testing technique for 
testing hardware logical circuits [7]. Since then, this method has 
gone through many changes regarding the notation used for 
describing cause-effect graph elements, including graph nodes, 
logical relations and constraints. The initially proposed 

algorithm for deriving test cases from the graph specification has 
also been modified many times and adapted for specific 
purposes and application on different types of systems. 

Depending on the type of the system being tested and 
available resources such as time and memory, different priorities 
can be determined when deriving test case suites from system 
requirements (e.g. prioritization based on coverage or on failing 
test cases explained in [8]). In all cases, the tests contained in the 
test suite need to ensure high fault detection in order to prevent 
software from failure [9]. Some applications may prefer quantity 
of test cases over test quality, if tests can be executed quickly. 
However, if test execution is time-costly, the test case subset 
needs to be as small as possible while ensuring a high level of 
fault detection [10] [11]. Validating the conformance of system 
requirements with the software implementation is very 
important, because mistakes during this process lead to 
unrepresentative test case suites and, subsequently, low fault 
detection (as described in [4] and explored in [12]). For this 
reason, significant efforts have been invested into improving and 
automatizing the requirement elicitation process so that cause-
effect graph specifications can perfectly conform to system 
requirements, such as [13] and [14]. 

Cause-effect graphs have been applied to numerous 
problems in practice, such as black-box testing safety-critical 
systems for monitoring high-speed trains [15], missile 
navigation [14], quantum programs [16], automatizing the 
college registration process [17], ATM machine money 
withdrawal [18] and knowledge assessment in e-learning [19]. 
The graphical notation used in these works for representing 
cause-effect graph elements in some cases only partially 
conforms to the notation presented in the standard literature ( [2] 
and [1]), whereas in some cases entirely novel and non-
standardized types of notation are used, which are more difficult 
to understand by non-domain experts. For this reason, a survey 
explaining different existing types of graphical notation is 
necessary, so that the usage of non-standardized notation can be 
avoided in future works focused on applying the cause-effect 
graphing technique on different real-world problems. 



Additionally, it is necessary to explain and summarize the 
existing algorithms and approaches for converting cause-effect 
graph specifications to test suites. This way, the most common 
drawbacks of the approach used for generating test case suites 
from cause-effect graph representations identified in [20] can be 
avoided and a better understanding of the technique can be 
acquired. 

This paper presents a systematic literature review of 
available cause-effect graphing approaches and algorithms in 
the form of a secondary study. A survey of this type, focusing 
entirely on the cause-effect graphing technique, has not been 
conducted before to the knowledge of the authors of this paper. 
Research papers (journal articles and conference papers) 
published from 1990 to 2022 were collected from the following 
databases: Web of Science (Core Collection), Scopus, EBSCO 
and IEEE Xplore. Papers were obtained by using the search term 
“cause-effect graph”. The conducted study aims to: 

• Present different proposed types of graphical notation for 
representing cause-effect graph elements (nodes, logical 
relations and constraints). This may aid the users tasked 
with creating cause-effect graph specifications so that 
common mistakes in the usage of graphical notation and 
improper understanding of different logical relations and 
constraints can be avoided. 

• Give a systematic overview of available algorithms for 
deriving test case suites from cause-effect graph 
representations and analyze the strengths and 
weaknesses of all different approaches. Afterwards, the 
most appropriate algorithm can be chosen for specific 
purposes by users of the cause-effect graphing technique. 

• Compare available software tools for creating cause-
effect graphs and deriving test case suites. In this way, 
these tools can be used as help for quicker cause-effect 
graph specification and test case suite derivation. 

The rest of this work is structured as follows. Section II 
describes different forms of cause-effect graphing notation used 
for graphically describing cause-effect graph elements. An 
analysis and comparison of available algorithms for deriving test 
case suites from cause-effect graph specifications is given in 
Section III. Section IV introduces the available tools for creating 
cause-effect graph specifications and converting them into test 
case suites. In Section V, an overall analysis of all presented 
approaches is given. 

II. NOTATION USED FOR REPRESENTING CAUSE-EFFECT 

GRAPHS 

Cause-effect graphs are composed of three types of elements 
[2] [1]: nodes (causes, effects and intermediates), logical 
relations between different types of nodes and constraints on 
same types of nodes. Nodes can be in one of two states – active 
(1) or inactive (0). Logical relations explain how the change of 
input variables (graph causes) affects the output variables (graph 
effects). Constraints explain what combinations of variables are 
forbidden. The different approaches for representing cause-
effect graph elements are summarized in Table I. Cause-effect 
graphs and all elements they contain are first introduced in [7]. 
In this work, the purpose of cause and effect nodes is explained. 

Intermediate nodes are only implicitly defined and are referred 
to as “unknown dummy nodes”. Six types of logical relations – 
direct, negation, conjunction, disjunction, negated conjunction 
and negated disjunction are introduced, as well as three types of 
constraints – mutual exclusion, all-inclusion and mutual 
exclusion and all-inclusion. This approach is not commonly 
used in practice, as the usage of intermediate nodes is often 
necessary for representing complex logical relations. 

More detailed explanations of different types of nodes are 
given in [2]. Intermediates are explicitly defined as a separate 
type of nodes for the first time. Separate numbering for different 
types of nodes is introduced as well. This work adapts all six 
initially proposed types of logical relations and all three different 
types of constraints. Additional two types of constraints are 
introduced – requirement and masking. This approach is 
commonly used in works such as [17], [15], and [16]. 

A simplification of previous approaches is offered in [1], 
dropping the negated conjunction and negated disjunction and 
adopting the remaining four types of logical relations. The usage 
of intermediates and all constraints is adopted. In this work, 
cause nodes are numbered incrementally, whereas other types of 
nodes are numbered according to system requirements. This 
approach is used in works such as [20] and [21], however 
representing the negated conjunction and disjunction is more 
difficult because additional logical relations need to be used.  

A different way of representing cause-effect graphs is 
introduced in [22], making it more suitable for the requirement 
elicitation process. In this work, only three types of logical 
relations are used – negation, conjunction and disjunction. No 
existing types of constraints are adopted. Instead, three new 
types of constraints are defined – positive, negative and neutral. 
Other types of connections are also introduced – membership, 
property and interactions. Node numbering is not used by this 
approach, due to its intended application for high-level and 
abstract descriptions of software requirements. Causes are 
described as “root factors”, effects as “top variables/events” and 
intermediates as “intermediate variables/events”. 

Table II shows a summary of all approaches for graphically 
representing cause-effect graph elements (nodes, logical 
relations and constraints), including the usage of arrow tips. The 
initial graphical notation for describing cause-effect graphs was 
introduced in 1970 by [7]. The work contains two graphically 
illustrated examples which demonstrate the usage of nodes, 
logical relations and constraints. Logical relations are 
graphically denoted with straight lines containing different 
letters depending on the type of relation: D for direct, N for 
negation, A for conjunction, O for disjunction, A for negated 
conjunction and O for negated disjunction. Constraints are 
graphically denoted with dashed lines containing different 
letters depending on the type of constraints: E for exclusion, I 
for inclusion and U for mutual exclusion and all-inclusion. 

The most commonly used graphical notation for describing 
logical relations is introduced in [2] and [1] – “~” for negation, 
“˄” for conjunction, “˅” for disjunction and a combination of 
these symbols for the negated conjunction and negated 
disjunction. The notation for representing exclusion and 
inclusion is adopted from [7], mutual exclusion and all-inclusion 
is represented by using the letter O and masking is represented 



TABLE I.  SUMMARY OF DIFFERENT APPROACHES FOR REPRESENTING CAUSE-EFFECT GRAPH ELEMENTS 

Source Year Node types Node numbering Logical relations Constraints 

[7] 1970 

1. Causes 
2. Effects 
3. Unknown dummy nodes 

Incremental 

1. Direct 
2. Negation 
3. Conjunction 
4. Disjunction 
5. Negated conjunction 
6. Negated disjunction 

1. Mutual exclusion 
2. All-inclusion 
3. Mutual exclusion and all-inclusion 

[2] 2010 
1. Causes 
2. Effects 
3. Intermediates 

Separate for each type 

1. Direct 
2. Negation 
3. Conjunction 
4. Disjunction 
5. Negated conjunction 
6. Negated disjunction 

1. Mutual exclusion 
2. All-inclusion 
3. Mutual exclusion and all-inclusion 
4. Requirement 
5. Masking 

[1] 2012 
1. Causes 
2. Effects 
3. Intermediates 

- Incremental for causes 
- Named for effects and 
  intermediates 

1. Direct 
2. Negation 
3. Conjunction 
4. Disjunction 

1. Mutual exclusion 
2. All-inclusion 
3. Mutual exclusion and all-inclusion 
4. Requirement 
5. Masking 

[22] 2017 

1. Root factors 
2. Top variables/events 
3. Intermediate 
    variables/events 

Named for all types 
1. Negation 
2. Conjunction 
3. Disjunction 

1. Positive 
2. Negative 
3. Neutral 

by using the letter M. Small differences are present between the 
notations used in these two works. In [2], the required constraint 
does not use any letters for representation, whereas in [1] the 
letter R is used for this purpose. In [1], an arrow tip is used for 
describing the required and masking constraints. This notation 
is often used in works such as [15], [14] and [16]. 

Many differences to the previously adopted approaches were 
introduced in 2017 by [22]. This work proposes the 
representation of logical relations as logical AND, OR and NOT 
circuits, which makes cause-effect graphs more similar to 
hardware logical circuits, as initially intended in [7]. Different 
types of nodes are represented with different types of bounding 
boxes (causes as ellipses, effects as circles and intermediates as 
boxes with rounded corners). Positive relations are described by 
using the “+” sign and negative relations by using the “-” sign. 
This approach only uses arrow tips for types of connections for 
which they are explicitly defined (e.g. causality and correlation). 

Some works focused on applying the cause-effect graphing 
technique to real-world problems do not conform to any of the 
previously described notation. In [18], arrow tips are used for 
describing directions of logical relations. “{ ˄” is used for 
describing conjunction and “¬” is used for describing negation. 
A type of notation where logical relations are represented as 
separate nodes (through the usage of rounded bounding boxes) 
is also presented, where logical relations are named by using 
words (e.g. conjunction is represented as “and”). A similar 
approach is also used in [19], where differentiation of relations 
from nodes is done by representing logical relations through the 
usage of square bounding boxes. 

III. ALGORITHMS FOR DERIVING TEST CASE SUITES FROM 

CAUSE-EFFECT GRAPH SPECIFICATIONS 

Different algorithms which have been proposed for 
converting cause-effect graphs to test case suites are 
summarized in Table III. Two algorithms for generating test 
case suites from cause-effect graph specifications are introduced 

in [7] – a brute-force approach which works by propagating 
values forward through the graph in order to determine resulting 
effect values, and a backward-propagation approach which 
forcefully activates effects and determines cause values by 
propagating the effect values backward through the graph. All 
subsequent algorithms represent some form of the initially 
proposed backward-propagation approach. The forward-
propagation approach was immediately abandoned due to its 
high computational complexity, which makes it too slow to be 
able to generate resulting test case suites in real time. A more 
detailed explanation of the backward-propagation algorithm is 
offered in [2] and [1], as well as examples of its application on 
cause-effect graphs of different sizes. 

Many attempts at improving the initial algorithm have been 
made. In [23], the usage of binary decision trees was proposed 
in order to further optimize the final test case table so that it 
contains test cases with multiple simultaneously active effects. 
In this approach, a binary tree is created for every effect of the 
graph and the backward-propagation algorithm is executed for 
every separate tree. At the end of the process, multiple test case 
tables are merged in order to obtain the optimized test case table. 
A similar approach was proposed in [24], without the usage of 
binary trees but instead by performing optimization on the test 
case table itself. Transforming UML models to cause-effect 
graphs for achieving a higher level of standardization was 
proposed in [25]. In this approach, a process for converting 
UML state machines to cause-effect graphs is proposed in order 
to enable the application of this technique for systems which are 
easily represented by UML models. This approach was further 
explored and applied for deriving test case suites in [26], through 
the usage of XMI files and the ATLAS programming language. 

The first approaches that propose the representation of 
cause-effect graph elements as Boolean expressions are [27] and 
[28]. These works introduce the Boolean Operator (BOR) 
strategy for generating test case suites from cause-effect graph 
specifications. Combining pairwise testing with cause-effect 
graphing was proposed in [29], by using the approach based on



TABLE II.  SUMMARY OF DIFFERENT APPROACHES FOR THE GRAPHICAL REPRESENTATION OF CAUSE-EFFECT GRAPHS 

Source Year Node representation Usage of arrow tips Notation for logical relations Notation for constraints 

[7] 1970 Rounded bounding boxes No 
Straight lines with letters (D, N, 
A, O, A and O) 

Dashed lines with letters (E, I, U) 

[2] and [1] 2010 and 2012 Rounded bounding boxes 
Yes (only for specific 
constraint types) 

Straight lines with symbols (˄, ˅, 
~ and combinations of these 
symbols) 

Dashed lines with letters (E, I, O, R, 
M) 

[18] and [19] 2012 and 2016 Rounded bounding boxes 
Yes (for logical 
 relations) 

Rounded/square bounding boxes Not discussed 

[22] 2017 

Causes – ellipses 
Effects – circles 
Intermediates – boxes 
with rounded corners 

Yes (only for specific 
connection types) 

Logical circuits Straight lines with letters (+, -) 

TABLE III.  SUMMARY OF DIFFERENT APPROACHES FOR THE USAGE OF THE BACKWARD-PROPAGATION ALGORITHM IN DERIVING TEST CASE SUITES FROM 
CAUSE-EFFECT GRAPH SPECIFICATIONS 

Approach Source Year Type of algorithm Algorithm specifics 

Consideration of 

simultaneously active 

effects 

Brute force [7] 1970 Forward-propagation 
Not implemented due to hardware 
limitations 

No 

Initially proposed [7] 1970 Backward-propagation 
APL/360 program for testing 
hardware circuits 

No 

Boolean expressions [27] and [28] 1993 and 1997 Backward-propagation Boolean operator (BOR) strategy No 

Optimization [23] 2009 Backward-propagation 
Usage of binary tress for considering 
simultaneously active effects 

Yes 

Combination with pairwise 
testing 

[29] 2014 Combined 
Combined approach with the usage of 
Boolean expressions and pairwise 
testing 

Yes 

UML model 
transformation 

[25] and [26] 2008 and 2014 Combined 
Usage of UML models for 
transformation 

No 

Boolean expressions [30] 2015 Backward-propagation 
Masking modified condition/decision 
coverage (MCDC) approach 

Yes 

Optimization [24] 2017 Backward-propagation 
Decision table reduction based on 
equivalent test cases 

Yes 

Boolean expressions [31] 2021 Backward-propagation 
Mutant-based spectral testing for 
Boolean specification models 

No 

 

Boolean expressions for representing cause-effect graph 
elements. The usage of Boolean expressions is further explored 
in [30] in order to increase the formalization of the cause-effect 
graph specification process so that it can be less error-prone. 
Cause-effect graphs are represented mathematically by using 
Boolean expressions, making it possible to use mathematical 
formulas when deriving test case suites by using the backward-
propagation algorithm. In this way, a smaller test case table is 
obtained while maintaining a high fault detection rate. This 
concept was perfected and successfully applied by using the 
GraphML format in [31]. 

A systematic review of drawbacks of the initial backward-
propagation algorithm is offered in [20]. The main identified 
weaknesses are: 

• Many inconsistencies in the description of the algorithm 
in [7] and [1], which lead to ambiguous interpretations 
of the steps of the algorithm and, subsequently, to its 
incorrect application for the derivation of test case 
suites. 

• The imprecise definition of the algorithm, which leads 
to the possibility of creating multiple different test case 
suites for the same set of system requirements which can 
be modelled in multiple equivalent ways, resulting in 
multiple cause-effect graphs. 

• The usage of the “don’t care” combination for output 
values, which needs to be resolved to either active or 
inactive output, but without any clear explanation as to 
how the resolving process should be done. The “don’t 
care” combination is still present in more recent works 
such as [2] and [18]. 

• Insufficient amount of explanation for different 
constraint types, which discourages their usage and 
leads to incomplete test cases suites. 

• Lack of consideration for different combinations of 
output values. In the initially proposed backward-
propagation algorithm, only effect activations are 



considered, whereas the absence of effect activations 
may be of interest for different types of systems. 

The importance of simultaneous effect activation is 
emphasized in [23], which is also not considered by the initially 
proposed algorithm. An attempt to enable the automatization of 
the test case derivation process and decrease the error-proneness 
of the initial algorithm is made in all approaches based on 
Boolean expressions (e.g. [30] and [31]), by introducing a 
mathematically formulated algorithm with explicitly described 
steps, removing all ambiguities and inconsistencies. A method 
for resolving the drawback concerning the misuse of cause-
effect graph elements by users of the technique is proposed in 
[14]. This method automatizes the process of cause-effect graph 
specification from system requirements by using natural 
language processing methods to derive cause-effect graph 
elements from the formal definition of the system. Novel 
notation more suited for domain experts is introduced in [22] in 
an attempt to resolve this drawback. 

IV. CAUSE-EFFECT GRAPHING TOOLS 

Several software tools for aiding the process of cause-effect 
graph specification and test case suite derivation have been 
introduced, as summarized in Table IV. The first such tool, 
BenderRBT, was developed by [32] in 2002. This tool is a 
desktop application that allows the user to graphically define the 
desired cause-effect graph specification, although the graphical 
elements do not use any of the graphical notation types 
explained in Section II. The option to derive test case suites is 
also supported. The tool is commercial and not available for free 
usage. 

Another desktop tool for cause-effect graphing was 
introduced in [33] (Cause-Effect Graph Software Testing Tool 
– CEGSTT). This tool allows the user to define cause-effect 
graph elements through the user interface, however the tool does 
not support the usage of graphical elements. Test case suites can 
be derived by using the created cause-effect graph 
specifications. The tool also enables automatic calculation of the 
effect coverage metric, which describes the ratio of graph effects 
covered by the generated test case suite. CEGSTT has not been 
disclosed by its authors and is therefore unavailable for free 
usage. Its usability is unclear, because its initial interface was 
executed on the Microsoft Windows 7 operating system.  

Recently, a new tool named Test Generator for Cause-Effect 
Graphs (TOUCH) has been developed in [31] and this tool is 
available for free usage at [34]. It is cross-platform and can be 
executed on the latest operating systems. This tool does not 
enable the user to graphically define cause-effect graph 
elements, instead specifying the graph through the user 
interface. It has the functionality of deriving test case suites from 
cause-effect graph specifications by using different algorithms 
based on Boolean expressions and the original backward-
propagation algorithm from [1]. In 2022, a new software tool 
designed for automatic conversion of system requirement 
descriptions to cause-effect graph specifications, Korean 
Requirement Analyzer for the Cause-Effect Graph (KRA-CE) 
[35] was introduced. This tool is web-based, but it has not yet 
been disclosed by its authors. 

 

TABLE IV.  SUMMARY OF AVAILABLE CAUSE-EFFECT GRAPHING TOOLS 

Name Source Year 
Open-

source 

Graphical 

elements 
Platform 

BenderRBT [32] 2002 No Yes 
Microsoft 
Windows 

CEGSTT [33] 2017 No No 
Microsoft 
Windows 

TOUCH 
[31] 
and 
[34] 

2021 Yes No 
Cross-
platform 

KRA-CE [35] 2022 No No Web-based 

V. CONCLUSION 

This paper gives a systematic summary of different aspects 
of the cause-effect graphing black-box testing technique. The 
process of defining graphs is complex and many ways of 
representation and graphical notations for different graph 
elements (nodes, logical relations and constraints) have been 
proposed. Many works which apply cause-effect graphs on 
different types of systems use different types of notation, which 
can lead to many errors in the process of defining cause-effect 
graph specifications and all further steps in black-box testing 
through the usage of this technique. 

The initially proposed backward-propagation algorithm for 
deriving test cases from cause-effect graph representations was 
analyzed and many of its improvements and combinations with 
other methods were mentioned. Known drawbacks of the 
initially proposed algorithm and attempts at its enhancement 
were explained, as well as different existing tools for aiding the 
usage of the cause-effect graphing method. Rather small number 
of available software tools for aiding the cause-effect graphing 
process indicates that new tools should be created, preferably 
with the usage of graphical elements which are not supported in 
currently available tools. 

The existing approaches were introduced, explained and 
compared to help users determine which notation they should 
use when describing cause-effect graphs and what elements they 
can use so that the cause-effect specifications can be complete 
and contain all necessary logical relations and constraints. 
Depending on their desired goal, the users can choose one of the 
many available algorithms for deriving test case suites from 
cause-effect graph specifications and optionally use the 
available tools for aiding this process. This can help remove 
some of the inconsistencies of the most widely used backward-
propagation algorithm, resulting in cause-effect graph 
specifications which are easy to understand by future users due 
to the usage of standard accepted graphical notation and test case 
suites generated by using algorithms most suited for the desired 
user priorities. 

Cause-effect graphs have many applications in practice, 
mainly black-box testing of different types of systems without 
specific requirements for system boundaries, class similarities 
and correlation. In the future, the presented concepts can be used 
for applying the cause-effect graphing technique for black-box 
testing of safety-critical, industrial, embedded or real-time 
systems, or any combination thereof. A case study of this type 



can be conducted while applying different types of proposed 
graphical notation and different types of existing algorithms, 
using the forward-propagation, backward-propagation, or the 
combined approach. The usability, ease of understanding for 
domain experts and the fault detection rate of the generated 
black-box testing suites for these approaches can be compared. 
Existing approaches can be merged in order to combine the 
positive aspects of each different approach, such as enhancing 
the existing graphical notation while using all different proposed 
types of logical relations and constraints. 
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